Sabemos que el conejo de monte es pieza básica en los ecosistemas mediterráneos ibéricos además de ser una pieza de caza menor muy apreciada, ya que se trata de una especie-llave, pues su presencia permite que otras especies de caza menor puedan habitar los mismos espacios. Igualmente, la alimentación de muchas especies amenazadas se basa en el conejo, en la liebre y en la perdiz y por tanto, es primordial en numerosos proyectos de conservación conocer la estructura de las poblaciones de lagomorfos (conejo: Oryctolagus cuniculus y liebre: Lepus granatenses) y perdiz roja (Alectoris rufa) en un área determinada. Para abordar estos proyectos, se realiza un análisis de las densidades relativas (censos de conejo), que nos proporciona información sobre la variación interzonal de sus efectivos y sobre la forma en que se distribuyen en el espacio.
Las técnicas de muestreo aplicadas permiten abarcar grandes superficies sin costos demasiado elevados y facilitan la comparación con otros datos obtenidos a través del mismo procedimiento. El modus operandi para abordar un muestreo o censo de estas especies, es la realización de un transecto lineal con una anchura determinada, en función de la visibilidad del observador, procediendo a anotar el número de individuos de cada especie observada a lo largo del recorrido. Al mismo tiempo con la ayuda de un distanciómetro láser (como el que podéis ver en la fotografía anterior) se anota la distancia desde la perpendicular de la línea de avance del censador a la observación; o, en caso de no estar en la perpendicular, la distancia a la observación y el ángulo que forma la línea imaginaria desde el contacto a la posición del censador.
Los recorridos, como los realizados a lo largo de las frías mañanas de esta semana en Ciudad Real, se realizan a primera hora de la mañana, en días sin viento fuerte ni precipitaciones y a una velocidad de entre 1-3 km/h.
Para el cálculo de las densidades (nº individuos por superficie), los resultados se incorporaron a la fórmula que relaciona el número total de individuos detectados con la distancia perpendicular de cada individuo al transecto y la longitud del transecto en metros, basado en la medición de las distancias exactas, asumiendo que la detectabilidad sigue una distribución half-normal.
Caso_1_franja_h2 dentro de un div cón otra imagen

¿Te has preguntado qué habilidad podría catapultar tu carrera en los próximos años? Si estás leyendo esto, probablemente ya intuyes la respuesta: el Prompt Engineering se está convirtiendo rápidamente en la competencia más codiciada del ecosistema de IA generativa. Y no, no es una moda pasajera – hay razones muy sólidas detrás de esta tendencia.
1.1 La IA generativa está en todas partes (y apenas estamos empezando)
Seamos sinceros: desde que ChatGPT irrumpió en nuestras vidas, la IA generativa ha pasado de ser una curiosidad tecnológica a una herramienta fundamental en miles de empresas. Ya no es "si" implementarán IA, sino "cómo" lo harán mejor que su competencia.
Caso_2_seccion_idea_destacada_con_titulo_y_subtitulo este es el titular en grande que resume la idea fuerza
Caso_2_seccion_idea_destacada_con_titulo_y_subtitulo, este es el mini párrafo interior que expande y explica la frase del titular de este mismo div.
1.2 Nuevos roles que pagan (muy) bien
¿Has visto últimamente ofertas de trabajo para "Prompt Engineers" o "AI Interaction Specialists"? Estos puestos, que ni siquiera existían hace dos años, ahora ofrecen salarios iniciales de 70.000€ en Europa y más de $120.000 en Estados Unidos.
¿Por qué empresas están dispuestas a pagar tanto? Porque un buen Prompt Engineer multiplica el retorno de la inversión en tecnología de IA. No solo ahorras tiempo a toda la organización, sino que desbloqueas posibilidades de negocio que de otro modo serían inalcanzables. Es como tener una superpotencia que traduce necesidades empresariales en soluciones concretas.
1.3 Tu ventaja competitiva (mientras los demás siguen confundidos)
Piénsalo así: mientras todos aprenden a usar herramientas de IA a nivel básico, dominar el Prompt Engineering te coloca varios pasos por delante del 99% de profesionales. Es como la diferencia entre saber conducir un coche y saber diseñar un sistema de transporte eficiente.
Caso_3_seccion_frase_destacada aquí va un texto que queramos destacar de manera importante visualmente.
Además, esta habilidad es transferible entre diferentes plataformas y modelos. No importa si tu empresa usa OpenAI, Anthropic, Mistral o cualquier otra IA – los principios fundamentales del Prompt Engineering se mantienen, haciendo que tu perfil sea valioso independientemente de qué tecnología específica esté de moda.
1.4 Un camino formativo accesible desde diversos backgrounds
Una de las mejores noticias es que no necesitas ser programador para convertirte en un excelente Prompt Engineer. Si bien los conocimientos técnicos ayudan, personas de marketing, diseño, recursos humanos o prácticamente cualquier campo pueden desarrollar esta especialización.
Caso_1_franja_h2 dentro de un div cón otra imagen

Universidades y centros formativos (como nosotros en MBIT School) están incorporando módulos específicos de Prompt Engineering en sus programas, abriendo puertas a perfiles que quizás no encajarían en roles tecnológicos más tradicionales.
Dominar el Prompt Engineering no es cuestión de suerte ni de probar comandos al azar. Hay principios fundamentales que diferencian a los profesionales de los aficionados. Veamos cuáles son:
2.1 Define el objetivo y el contexto (antes de escribir una sola palabra)
El error más común que vemos en nuestras clases es lanzarse a escribir prompts sin haber definido claramente caso_4_negrita_con_interaccion sirve para poner en negrita una idea dentro de un texto y que haya una microinteracción que capture tu atención. Un prompt efectivo siempre comienza estableciendo el contexto adecuado:
Caso_5_grid_ideas sirve para dividir un contenido en varias fichas visualmente para entender mejor el contenido
Proporciona información relevante (sin abrumar con detalles innecesarios)
Establece limitaciones importantes que la IA debe considerar
Compara estos dos prompts:
❌ "Dame ideas para mi negocio"
✅ "Soy propietario de una panadería artesanal en Barcelona con clientela principalmente local. Necesito 5 ideas innovadoras para aumentar mis ventas durante los meses de verano, considerando un presupuesto máximo de 2.000€."
¿Notas la diferencia? El segundo prompt orienta a la IA con precisión y evita respuestas genéricas que no aportarían valor real.
2.2 Estructura tus instrucciones (las IAs aman el orden)
Los modelos de IA no "piensan" como nosotros. Responden mejor cuando les das instrucciones claras, secuenciales y bien estructuradas.
Para conseguir respuestas precisas:
Usa listas numeradas para secuencias de pasos
Emplea viñetas para características relacionadas
Separa visualmente las diferentes partes de tu instrucción
Un truco que funciona sorprendentemente bien: divide una tarea compleja en subtareas más sencillas. Obtendrás mejores resultados que con una única instrucción complicada.
Recuerda: si tú mismo tienes que releer tu prompt para entenderlo,
la IA probablemente también tendrá dificultades.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. caso_8_link es un ejemplo de cómo se maqueta visualmente un enlace que queramos destacar a otro sitio.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique.

caso_6_cita_autor aquí va el nombre del autor
caso_6_cita_autor aquí va el texto de la propia opinión del autor.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique.
caso_7_cita_externa aqui va el nombre de la fuente caso_7_cita_externa aquí va el texto que hace referencia a la fuente externa, como un estudio, un dato oficial o similares.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.